A synergy study between SST, Chl-a and altimeters to improve surface geostrophic currents
COSPAR 2014
Moscow, Russia

P. Tandeo(1), M. Saraceno(2), R. Fablet(1) and J. Ruiz(2)

(1)Institut Mines-Telecom, France
(2)National Scientific and Technical Research Council, Argentina

5th of August 2014
Objectives

1. Study surface dynamics at mesoscale:
 - relationships with active/passive tracers
 - temperature (SST) and color (Chl-a)

2. Improve surface dynamics:
 - using remote sensing data
 - high resolution SST and Chl-a

SST (RSS) & Currents (Aviso)
Chl−a (MODIS) & Currents (Aviso)
Remote sensing data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Provider</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST</td>
<td>RSS</td>
<td>http://www.ssmi.com</td>
</tr>
<tr>
<td>Chl-a</td>
<td>MODIS</td>
<td>http://modis.gsfc.nasa.gov</td>
</tr>
<tr>
<td>SSH</td>
<td>Aviso</td>
<td>http://www.aviso.oceanobs.com</td>
</tr>
</tbody>
</table>

- Daily $1/4^\circ$ interpolations
- Year 2004
- Brazil-Malvinas Confluence Zone
Methodology

Introduction

- Local relationships between:
 - (a) SST and SSH
 - (b) Chl-a and SSH

- Dynamical modes between (SST, Chl-a, SSH), how to:
 - separate them?
 - characterize them?
 - track them?
Surface Quasi-Geostrophic (Isern-Fontanet et al. 2006):

Fourier domain:
\[\widehat{SSH} = -\gamma |\kappa|^{-\alpha} \widehat{SST} \iff \widehat{SSH} = \mathcal{H}_k \widehat{SST} \]

Real domain:
\[SSH = H_k * SST \]
with \(H_k \) a spatial convolution operator

\[\Rightarrow \text{Different } H_1, \ldots, H_K? \]
\[\Rightarrow \text{How to estimate them?} \]
Methodology
Statistical variables

- **X** → SST and Chl-a patches (9 × 9 pixels)
- **Y** → SSH, U and V (center of the patch)
- **Z** → Hidden dynamical mode (center of the patch)
- Learning dataset → random spatio-temporal sampling

Synergy between SST, ChlA and altimetry
5th of August 2014
Latent class regression (DeSarbo and Cron 1988):

\[p(Y|X, Z = k) \propto \mathcal{N}(Y; XH_k, \Sigma_k) \]

with \(\mathcal{N}_k \) a multivariate Gaussian pdf:

- evaluated in \(Y \)
- mean \(XH_k \) and covariance \(\Sigma_k \)
Results

Dynamical modes

Estimated dynamical mode (Z)

Four dynamical modes:
- **Z=1** → cyclonic eddy
- **Z=3** → anticyclonic eddy
- **Z=2** and **Z=4** → weaker modes
Results
Current estimation

Fuzzy regression:

\[\hat{Y}^{(\text{new})} = \sum_{k=1}^{K} \hat{\pi}_k X^{(\text{new})} \hat{H}_k \]

with \(\hat{\pi}_k \rightarrow \) probability for \(Z = k \) and \(\hat{H}_k \rightarrow \) transfer function

Latent class regression
Fuzzy regression:

\[
\hat{Y}(HR) = \sum_{k=1}^{K} \pi_k \hat{X}(HR) \hat{H}_k
\]

with \(X^{(HR)} \rightarrow\) high resolution SST and Chl-a (0.05°)
Conclusions

- Learn dynamical modes:
 - low resolution (LR) remote sensing data
 - statistical model
 - learn transfer functions between SST, Chl-a and SSH
Conclusions

- Improve surface currents:
 - high resolution (HR) remote sensing data
 - apply transfer functions
 - high spatio-temporal resolution currents

SST

Chl-a

MODES

Currents

HR

HR

HR
Perspectives

- Validate estimated currents in south Atlantic
- Apply to other regions (Gulf Stream, Agulhas, Kuroshio)
- Use SMOS salinity data

